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1 (i) Find the remainder when x3 + 2x is divided by x + 2. [2]

(ii) Write down the value of k for which x + 2 is a factor of x3 + 2x + k. [1]

2 Solve the equation 4 × 3x = 5, giving the solution in an exact form. [4]

3 The graph of log
10

y against x is a straight line with gradient 2 and the intercept on the vertical axis

at 4.

Write down an equation for this straight line and show that y = 10 000 × 100x. [4]

4 The complex numbers Ï
1

and Ï
2

are given by Ï
1
= 2 + i and Ï

2
= 3 + 4i.

(i) Verify that �Ï1� + �Ï2� > �Ï1 + Ï2�. [4]

(ii) Sketch on an Argand diagram the locus �Ï − Ï
1
� = 2. [2]

5 (i) Show that
3

x + 2
+ 1

x + 1
� 4x + 5

x2 + 3x + 2
. [2]

(ii) Differentiate
4x + 5

x2 + 3x + 2
with respect to x. [3]

(iii) Hence show that the function given by

f�x� = 4x + 5

x2 + 3x + 2
, x ≠ −1, x ≠ −2,

is a decreasing function. [2]

6 The points A and B are at �2, 3, 5� and �8, 2, 4� with respect to the origin O.

(i) Find the size of angle AOB. [4]

(ii) Show that triangle AOB is isosceles. [3]

7 (i) Use a change of sign to verify that the equation cos x − x = 0 has a root ! between x = 0.7 and

x = 0.8. [2]

(ii) Sketch, on a single diagram, the curve y = cos x and the line y = x for 0 ≤ x ≤ 1
2
0, giving the

coordinates of all points of intersection with the coordinate axes. [2]

An iteration of the form xn+1 = cos�xn� is to be used to find !.

(iii) By considering the gradient of y = cos x, show that this iteration will converge. [3]

(iv) On a copy of your sketch from part (ii), illustrate how this iteration converges to !. [2]

(v) Use a change of sign to verify that ! = 0.7391 to 4 decimal places. [2]
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8 P and Q are points on the circumference of a circle with centre O and radius r. The angle POQ is1 radians. Given that the chord PQ has length 4, find an expression for the length of the arc PQ in

terms of 1 only. [5]

9 (i) Show that
sin x

1 + sin x
� sec x tan x − sec2 x + 1. [5]

(ii) Hence show that Ô
1
4
0

0

sin x

1 + sin x
dx = 1

4
0 + �

2 − 2. [6]

10 (i) Using the substitution u = 1

x
, or otherwise, find Ô sin

 1

x

!

x2
dx. [4]

(ii) Evaluate Ô
10
1

20

sin
 1

x

!

x2
dx and Ô

1
20
1

30

sin
 1

x

!

x2
dx. [3]

(iii) Show that, when n is a positive integer, the integral Ô
1

n0
1

�n+1�0

sin
 1

x

!

x2
dx takes one of the two values

found in part (ii), distinguishing between the two cases. [3]

11 The function f is defined by f�x� = �
x, x > 0.

(a) Use differentiation from first principles to find an expression for f ′�x�. [5]

The lines l
1

and l
2

are the tangents to the curve y = f�x� at the points A and B where x = a and x = b

respectively, a ≠ b.

(b) (i) Show that the tangents intersect at the point
��

ab, 1
2
�
�

a + �
b�

�
. [5]

(ii) Given that l1 and l2 intersect at a point with integer coordinates, write down a possible pair

of values for a and b. [2]
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